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ABSTRACT

The effects of trim on stability of motion during depth
control of submersible vehicles are analysed. Full state
feedback control is used to provide stable response in the dive
plane, and feedforward control is used to ensure steady state
accuracy. A comple sc’ of stability maps is generated for
various values of meta =rtric height, longititunal centef of
gravity/center of buoyancy separation, forward speed, and
control law time constant. The ~esults clearly indicate ranges
of parameters that should be chosen in design and operation of

a given vehicle.
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NOMENCLATURE

Closed loop dynamics matrix for
linearized system

Control surface coordination gain
Local beam of the hull

Vehicle buoyancy

Control matrix in state space
Quadratic drag coefficient
Coupled heave and pitch terms
Cross flow drag terms

Bow plane deflection

Stern plane deflection

Vehicle mass moment of inertia
Cross flow drag terms

Controller gains in 0,w,q, and z
Feedforward gain

Vehicle mass

Pitch moment

Partial derivative of M w.r.t. a
Pitch angle

Pitch rate

Time constant

Forward speed

Nominal speed

Heave velocity

Vehicle weight

State vector

Body fixed coordinates of vehicle
center of buoyancy

Body fixed coordinates of vehicle
center of gravity

Deviation off the nominal depth
Vehicle metacentric height

Heave force

Partial derivative of Z w.r.t. a

the




I. INTRODUCTION

The fundamental goal of submarine control is to reach and
maintain ordered depth. Experimental designs involve expensive
model testing such as Darpa Suboff Model (DTRC Model 5470)
[(Ref. 6]. Much research has been done in depth control of
submarines [Ref. 3,5]. Our goal is to develop an analytic
method to determine the stability properties of a design.

The stability of a design will have a significant impact
on its responsiveness. A vehicle with a large margin to
instability will not be very responsive. The problem becomes
one of determining how close to the margins we can get without
a total loss of stability. By expanding the scope of our
research to include nonlinear terms we are able to define the
limits of stability and therefore margins.

Previous studies analyzed stability properties of the
system, specially static bifurcations [Ref. 2] and
bifurcations to periodic solutions [Ref. 1). The latter study
which is used as a basis for this work, was restricted to
level, zero trim flight paths.

The purpose of this thesis is to develop a program for
finding the limits of stability for an out of trim submarine
at moderate and high speeds. These limits are mapped using a

Hopf bifurcation analysis program included in the Appendix.




II. EQUATIONS OF MOTION
The motion of the submersible in the vertical plane can be
modeled by four coupled nonlinear differential equations for
pitch rate (g), heave velocity (w), pitch angle (©6) and heave
(z). With a body fixed coordinate frame at the vehicle's
geometric center , we can express Newton's equations of motion

as

mb-Ug ~259°-x5d) =Zf+Z+2y 8,+28,+Zw+2Zq

(2.1)
1 (w -xq)°
-Zp[Cpb dx
i Ry
ly-mxa(ﬁ-Uq) ~zgwqm = -x@Bcosﬂ—z@Bm9+M“6‘
1 (w-xq)° (2.2)
M8, +Mg+Mp+Mg+Mws—p[Cnbee) T2 vt
3 pt Mg My AW 2’! o) |w-xq|
2.3
. (2.3)
(2.4)

2=-Usin®+wcos 0




Equations 2.1 through 2.2 can be written in a more compact

form as,

¥ =a,Uw+apUqg+a;zqpsin®+a,x.yco80+ b,U’b,

(2.5)
b2U26b+ d (w.gq)+c w.q)

4§ =ayUw+a,Uq+ayzq,sin®+ a”x@m0+b1026‘

(2.6)
bU28,+d (wg)+cy(mg)

where,

y = (m -Z*)(Iy—M’)- (mx 5+ ZQ)(me+M*)

D, = (Z,,-2CpE,Utan 85) (I,- My + (mx 5+ Z,) (M, + 2CpE, Utan 8,)

a;, D, = (m+Zq+ 2CpE,Utan Oo)(ly-Mq) +
(mx 5+ Zq)(Mq—mxo-mzaUtm 6,- 2CLE,Utan 8,

ayD, = (M, +2C E Ut 8y) (m-Z,)+ (mx;+ MY(Z,~ 2CpE,Utan 6,)

(mxz+ M, )(m+ Zq+ 2CpEUtan 9y)

(2.7)
ayD,=-m+Z,)B

GIJD" = - (mG+ 20)3

le' = (I,'M4)Za- (a+ 24)M‘




b,D, = (m-Z )My+ (mx;+ M) Z,

d,(w.q)D, = (m-Z)I + (mx ;+ M ),

d,(wq)D, = (ly-Mq)Iw— (mx ; + Z,)Iq

e @)D, = (I,-M mz5q° - (mx g+ Z)mzgwg
c%.g)D, = - (m-Z,)mzgwq - (meg+M,)mzgq’

In these equations the submersible is assumed to be
neutrally buoyant (W=B), and statically stable (z; > zg). Here
we can assume 2z, to be zero, hence 2z, = 2z

At steady state the cross flow drag integral terms I, and

I, have the form,

IH=—CDw|w|]'b(x)d¢ I,=CDw|w|[b(x)xdz (2.8)

From equation (2.3) it is seen that w is equal to tanf, at
steady state. The /b(x)dx term is computed numerically for the
SUBOFF model as E,, and /b(x)xdx term as E,; Therefore, the
cross flow drag terms become,

I, = -C, w W/ E, I, =C,w W/E, (2.9)




Because we have two rudders at the bow and the stern, our
system of equations is multi-input. To reduce this system into
a single input system the linear combination of the control
inputs will be modified into the following form,

5=, , S, = ad, (2.10)
where o is the control surface coordination gain. The value
of o ranges from -1 to 1. The selection of the value of a will
allow the planes to operate as desired for the particular
maneuvering condition, i.e., a = 0 for no bow plane control,
a = -1 for bow plane and r*ern plane opposed to each other,
yielding the maximum pitch moment, and a = 1 for bow and stern
plane control in the same direction, yielding the maximum

heave force.
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III. CONTROL LAW
A. INTRODUCTION

The control design problem can be expressed in state space

as follows,

£=Ac+ B8 (3.1)

where the state vector is

0
w
x = :
q (3.2)
z
Equation 3.1 in our case is,
o]l [ 0 0 1 o |
~ a,52cp-bpm 2"1 a;u-bu 2“'2 a,p ‘l'z"zks ~bu 2*4 w (3.3)
4| layFap-bp’k, ayu-bu’k, ayu-buky -bu'k |4
2, -u 1 0 0 z

Our aim is to find a controller which will assure us a

stable closed loop system. The only control input is the dive
plane angle, &.




B. FEEDBACK CONTROL
1. Pole Placement
The full state feedback controller is a linear function of
the states and has the form,
o= - K x (3.4)
where K is the vector of feedback gains which are to be
determined in order to give the desired closed loop system
dynamics. Substituting equation 2.12 into 2.10 yields,
$=(A-BK)x (3.5)
The feedback gains K must be chosen such that A - BK has the
desired eigenvalues. The actual characteristic equation of the
closed loop system is given by,
det(A - BK - sI) = 0 (3.6)
The required values of K are obtained by matching coefficients
in the two polynomials of the actual and the desired

characteristic equations. Equation 3.5 becomes,

o] To o 1 ofe] [0
a a a 0 b,u?
) 1¥as A4 M vl I 5 (3.7)
q a,Zgg Gy ap 0| |q bzuz
Lt. | U 1 0 0_ z | 0 ]

The characteristic equation of the closed loop system is,




-3 0 1 0

et a,56p-bmk ajpu-buky-s au-bu’t; -bu’k, (3.8)
atan-bu’ky ayu-bu’ky azu-bpulky-s -bulk,

-u 1 0 -3

which reduces to,

s+ (A,ky+ Agky - E )s%+ (-B k- Byky- Bsks- Bk~ Ej)s’+

(-Ck,=Cyky- Cyky-Egs+ (-Dyky-Dyk,) = 0 (3.9)
where,
A, = -B, = b, v’
A, = -B, = b, u?
B, = (a,, b, - a,, b,) u’
B, =C, = (a,, b, - a,, b)) u
C, =D, = (a,, b, -a,, b, ) 2z, U’ (3.10)

C, = (a,; b, + b, = a,, b,) v’

D, = (a; b, - a, b;) u’

E, = (a,;, + a,) u

E, = a,2g + (a,,8, - a; a;) u

E, = (a,; a,, - a5 a,) 25 U

Now, let's assume that we want to place the closed loop poles
at -p,, -P.s -Ps» -pP, to have the desired system response. Then
the desired characteristic equation is,

‘ (3.11)

s +¢,c’+¢2:2+u’:+c4=0




where,

Q = P, *+ p; + p; + P,

Q = P;P; + P, P; P, Py + P2 P; + P2 Py + P; Py (3.12)
O * P1P2Ps ¥+ Py P2P¢ * P1P; P« + P2P;3 Py

a = p, P, P; P,
The feedback gains can now be computed by equ g the

covefficients of equation 3.9 and 3.11,

A, k, + A, k; = -a; - E,

B, k, + B, k, + B, k, + B, k, = ap + E, (3.13)
C, k; + C, k, + C, k, = a, + E, '
(D, + D,) k, = a,

We established the method for placing the poles of the
system, but we also need to know the desired locations of the
poles.

2. Pole Location Selection

In a typical second order system control law design ,
transient response specifications are given. This results in
an allowable region in the s-plane where the desired location
of the poles can be obtained. For higher order systems the
concept of dominant roots can be employed. In selecting poles
the physics of the system must be considered. If the poles are
too negative, a small time constant will result, and the

system may not be able to react that fast. If we use big gains

10




K, this also means that the control effort will be large. In
practice there are 1limits based on actuator size and
saturation.

Considering the control law design to stabilize the
su.marine to a level flight path at 6 = 0 it is required that
the submarine return to the level flight, after some small
disturbances in 6 or z, within the time it takes for the
vehicle to travel three ship lengths. Since our model is 14
feet long and its velocity is 5 feet/sec., the required
recovery time is about 10 seconds. This means the time
constant is 3 seconds and the closed loop poles should be
placed at approximately -0.3.

After placing the poles using equation 3.13 the
control law is found to be,

6 =0.9917 6 + 0.8333 w + 0.6026 q - 0.0351 z (3.14)

C. FEEDFORWARD CONTROL

The previous discussion on feedback controller assures
closed loop stability, but it acts as a regulator in other
words takes all the states to zero values. If we have constant
disturbances or we want to track some reference value other

than zero we can not do this with state feedback alone.

11
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el

¢ K

vector of feedback gains

FIGURE 3.1 Feedback and feedforward control application to

our linearized model

In the case of non-zero set points or constant
disturbances we again need to have the exact same full state
feedback to ensure closed loop stability. But we also need to
introduce an additional term to our controller in the form

u=-Kx + k, (3.15)

12




where k, is the constant feedforward term. k, is given as
[Ref. 4],

k, = H ' (0) x, (3.16)
where x, is the reference values of the states and H 2'(s) is
the closed loop transfer function,

H'(s) =C (sI - A+ BK)'B (3.17)
Another way of getting k, is looking at the steady state
equations of motion. In steady state all the time derivatives

in equations 2.1 through 2.4 go to zero and we have,

—— (3.18).
(3.19)

Z8+Zw-1y=0
~(xg-xg)Bcos 0,-z,BsinB,+ M8 + M w +1,=0 (3.20)

If the equation 3.19 is multiplied with M; and equation 3.20
with Z;, and set equal to each other and plug in the equation
3.18, we have an equation depending only on ©.

(ZMy-M2,)tan0,+x;BZycos 0,+z;BZ,sin0,+

Cp(EgMy-E,Z,)tan 0, |tan 0,| (3.21)

Where E, and E, are the integral terms computed numerically for
the Suboff model. The steady state value of 6, is
found from equation 3.20 by using a Newton-Raphson method

in Bifurl program in the Appendix. Then we can get 5 from

13




equation 3.19,

6 . In'z'w . 'Cosamoo'“'oO'-zww (3.22)
z, Z,

After getting 5, we easily find k, from equation 3.15,
k,= 5 + Kx (3.23)
A plot of the steady state angle 6, versus x, for different

values of z, is shown in Figure 3.2.

14
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FIGURE 3.2 Steady state pitch angle 6, as metacentric

height varies
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IvV. BIFURCATION AMALYSIS

A. STABILITY

The nonlinear equations of motion in the dive plane 2.1
through 2.4 can be expressed in a compact form as follows,

.f=f(X) (4.1)

Where x is the state variable vector x=[6,w,q,z]. We know

that the equilibrium points, x, of the system are defined by,

f(x,) =0 (4.2)

This is a nonlinear system of algebraic equations and it
may have multiple solutions in x,, which means that the
nonlinear system may have more than one positions of static
equilibrium. If we pick one equilibrium, x, we can establish

its stability properties by linearization. The linearized

system becomes,

2= Ax (4.3)

where A is the Jacobian matrix of £ (x) evaluated at x,,

9
A;fl., (4.4)

16




and the state has been defined to designate small deviations
from the equilibrium x,,

X — X=X, (4.5)

In system dynamics as long as all eigenvalues of A have

negative real parts, we know that the linear system will be

stable. This means that the equilibrium x, will be stable for

the nonlinear system as well. This is in fact Lyapunov's

linearization technique.

B. BIFURCATION

Values of the nonlinear system parameters at which the
qualitative nature of the system's motion changes are known as
critical or bifurcation values. The phenomena of bifurcation,
i.e., quantitative change of parameters leading to qualitative
change of system properties, is the topic of bifurcation
theory. Euler buckling (Pitchfork bifurcation), limit cycles
(Hopf bifurcation) are common examples of bifurcation.

Classical definition of stability states, that the real
part of all the eigenvalues of the system must be negative.
Therefore, our initial investigations into the stability of
the SUBOFF model was to find those eigenvalues whose real
parts cross the imaginary axis. We used the bifurcation
analysis program, included in the Appendix, to calculate the

eigenvalues of the system.

17




By linearizing the equations of motion, equations 2.1
through 2.4 , the state space equations of the dynamic system

can be written in the form,

X=Ax+Bu (4.5)

where,

u=-~-Kx (4.6)
and K is the vector of controller gains, as calculated by pole
placement in equations 3.13. The eigenvalues of the system are
found by solving, |
det|A-BK-sI| = 0 (4.7)
In the bifurcation program a pseudo-root locus method is
employed where the time constant, T.,, is fixed. The constant
T. fixes to placement of the system poles at a given nominal
forward speed U, and then the model speed, U, is varied
incrementally with the system eigenvalues calculated at each
speed increment. When the real part of an eigenvalue changes
sign between the limits of a speed increment a bisection
method is employed to find the speed where the real part of

the eigenvalue equals zero.
For each point where the real part of an eigenvalue
crosses the imaginary axis the associated T, and U are plotted

on a bifurcation map. This map delineates the regions of

18




classical stability (all eigenvalues on the left hand plane)
from the regions of instability. A family of bifurcation maps
were generated by varying nominal speed, U,, initial
stability, z,, and longitudinal center of gravity/buoyancy
separation, x; of the submersible.

Figure (4.1) shows a typical bifurcation map with its five
distinct regions [Ref. 1]. Region I is the area of classical
stability. In region II there is one real positive eigenvalue
which is indicative of a pitchfork bifurcation. Pitchfork
bifurcations of this model were previously examined by Reidel
(Ref. 1). Regions III,IV, and V have at least one pair of
complex conjugate eigenvalues with a positive real part. This
would indicate that there should be an unstable oscillatory

behavior for the model.

C. RESULTS AND DISCUSSION

The classical stability region in bifurcation maps lies
between pitchfork and Hopf bifurcaticn boundaries. The limits
or parameters must be defined for the system designer prior to
starting the design. By maximizing the region of stability we

can give the decigner the most leeway in his work. There are

19




TIME CONSTANT

6 1 H T T v A
5 o
m

41 Iv )
PITCHFORK B. \ ;

3 _ : =

2 STABLE REGION > o

1 -
0 02 04 06 0.8 1 1.2 1.4 1.8 1.8

FORWARD VELOCITY (NONDIMENSIONAL)

FIGURE 4.1 A typical bifurcation map showing the five

distinct regions
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two parameters that we used to change the bifurcation maps,
the longitudinal separation between center of gravity and
center of buoyancy, x,, and the initial stability, 2.

First we look at the change in x . In figures 4.2 through
4.7 we plotted bifurcation curves for different initial
stabilities as x; varies. We can see that as x, increases
the Hopf bifurcation branches Hl an H2 move towards higher
speeds and time constants and thus increasing the stability
area. The H3 branch however remains constant.

The other important point that we observed is that the
system becomes unstable at nominal speed at higher timé
constants. This is unexpected because we are designing around
our nominal speed. A more careful examination in the trimmed
case shows that the actual forward velocity becomes, vVu+w’.
Therefore the system may become stable at a value of u other
than nominal.

The next parameter we examined was the initial stability,
Zgge Figures 4.8 through 4.14 show the effect of varying zg
from .2 to .4 ft for different x, values. The H3 branch
remains constant while the upper speed H2 branch moves down
effectively decreasing the area of stability. The low speed
curve H1l moves upwards and increases the low speed area of

stability.

21




TIME CONSTANT

i I i i i

L

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

VELOCITY (NONDIMENSIONAL)

FIGURE 4.2 Bifurcation map as xg changes between xg=0 and

xg=-.2, zg=.2,
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FIGURE 4.3 Bifurcation map as xg changes between xg=0 and

xg=.2, zg=.2.
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TIME CONSTANT

5
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FIGURE 4.4 Bifurcation map as xg changes between xg=0 and

xg’-o3' zg-o3o
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TIME CONSTANT
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FIGURE 4.5 Bifurcation map as xg changes between xg=0 and

xg=.3, zg=.3.
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TIME CONSTANT
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FIGURE 4.6 Bifurcation map as xg changes between xg=0 and

xg-"’.3, zg"4o
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TIME CONSTANT
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FIGURE 4.7 Bifurcation map as xg changes between xg=0 and

xg=.3, zg=.4.
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FIGURE 4.8 The effects of changing zg on the bifurcationm

maps, xg=.3.
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TIME CONSTANT
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Hopf bifurcation analysis is a very useful design tool in
the design and evaluation phase. Hopf bifurcation analysis and
an identification program that can evaluate the hydrodynamic
coefficients for the submersible vehicle will be very useful
and save money and time by reducing the amount of model
testing. An effective set of control system parameters can be
generated in this process that will be optimal for the final
design of the submersible.

This type of analysis can set the limits of the ranges of
important parameters such as metacentric height and
longitudinal separation of buoyancy/gravity centers. As we
have seen changes in these two parameters can have dramatic
effects on stability. It was found that the moderate speed
region of stability increases with increasing metacentric
height. The same is not true, however, for high speeds. The
longitudinal separation of center of gravity/buoyancy can have
a profound effect on stability. It was found that the vehicle
may be unstable even at nominal speed. This was attributed to
the fact that at high trim angles, the feedback gains which

are computed at zero trim, can no longer guarantee stability.
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B. RECOMMEMNDATIONS

The bifurcation analysis program should be expanded to
evaluate the performance of the submarine including effects of
external forces such as wave effects, currents, and free

surface effects.
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APPENDIX - BIFURCATION ANALYSIS PROGRAM

C PROGRAM BIFUR1.FOR
C BIFURCATION ANALYSIS
C PARAMETERS ARE: TC VS. U

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DOUBLE PRECISION K1,K2,K3,K4,L MQDOT,MWDOT,MQ,MW,MDS,MDB,MD,
& MASS,IY,P1,P2,P3,P4,XGB,ZGB

DIMENSION A(4,4), FV1(4),IV1(4),ZZZ(4,4), WR(4), WI(4), XL(25),
& BR(25),VEC0(25), VEC1(25), VEC2(25)

COMMON P1,P2,P3 P4

C

OPEN (11,FILE='BIF1.RES',STATUS='NEW")

OPEN (12,FILE=BIF2 RES',STATUS=NEW')

OPEN (13, FILE=BIF3.RES',STATUS='NEW)

C NUMERIC INFO OF DARPA SUBOFF MODEL

WEIGHT=1556.2363

BUO =1556.2363

L =13.9792

IY =561.32

G =322

MASS =WEIGHT/G

RHO =194

XB =00

ZB =00

CD =04
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CD =0.5*CD*RHO

WRITE (*,*) 'ENTER MIN, MAX, AND INCREMENTS IN Tc (nondim)
READ (*,*) TCMIN, TCMAX,ITC
WRITE (*,*) 'ENTER MIN, MAX, AND INCREMENTS IN U (nondim)
READ (*,*) UMIN,UMAX,IU
C  WRITE (*.*) 'ENTER NOMINAL SPEED'
C READ (**) U0
WRITE (*,*) ENTER XG AND ZG'
READ (*,*) XG,ZG
U0=9

ZGB=2G-ZB
XGB=XG-XB
TCMIN=TCMIN*L/UO
TCMAX=TCMAX*L/UO
UMIN =UMIN*UO
UMAX =UMAX*U0

C HYDRODYNAMIC COEFFICIENTS
ZQDOT=-6.3300E-04*0.5*RHO*L **4
ZWDOT=-1.4529E-02*0.5*RHO*L**3
ZQ =7.5450E-03*0.5*RHO*L**3
ZW =-1.3910E-02*0.5*RHO*L**2
ZDS =-5.6030E-03*0.5*RHO*L**2
ZDB =-5.6030E-03*0.5*RHO*L**2
MQDOT=-8.8000E-04*0.5*RHO*L**5
MWDOT=-5.6100E-04*0.5*RHO*L**4
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MQ =-3.7020E-03*0.5*RHO*L**4
MW = 1.0324E-02*0.5*RHO*L**3
MDS =-2.4090E-03*0.5*RHO*L**3
MDB = 2.4090E-03*0.5*RHO*L**3

XL(1)=0.0
XL(2)=0.1
XL(3)=0.2
XL(4)=0.3
XL(5)=0.4
XL(6)=0.5
XL(7)=0.6
XL(8)=0.7
XL(9)=1.0
XL(10)=2.0
XL(11)=3.0
XL(12)=4.0
XL(13)=7.7143
XL(14)=10.0
XL(15)=15.1429
XL(16)=16.0
XL(17)=17.0
XL(18)=18.0
XL(19)=19.0
XL(20)=20.0
XL(21)=20.1
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XL(22)=20.2
XL(23)=20.3
XL(24)=20.4
XL(25)=20.4167
DO 102 N=1,25
XL(N) = (L/20.)*XL(N) - L/2.
102 CONTINUE
BR(1)=0.0
BR(2)=0.485
BR(3)=0.658
BR(4)=0.778
BR(5)=0.871
BR(6)=0.945
BR(7)=1.010
BR(8)=1.060
BR(9)=1.18
BR(10)=1.41
BR(11)=1.57
BR(12)=1.66
BR(13)=1.67
BR(14)=1.67
BR(15)=1.67
BR(16)=1.63
BR(17)=1.37
BR(18)=0.919
BR(19)=0.448
BR(20)=0.195




BR(21)=0.188

BR(22)=0.168

BR(23)=0.132

BR(24)=0.053

BR(25)=0.0

DO 104 K=1,25
VECO(K)=BR(K)
VECI(K)=XL(K)*BR(K)
VEC2(K)=XL(K)*XL(K)*BR(K)

104 CONTINUE

CALL TRAP(25,VECO,XL,EO)

CALL TRAP(25,VEC1,XL.E1)

CALL TRAP(25,VEC2,XL,E2)

ALPHA=0.0
ZD=ZDS+ALPHA*ZD2
MD=MDS+ALPHA*MDB

C CALCULATING THE SS PITCH ANGLE 6,
C WITH NEWTON RAPHSON METHOD

P1= ZW*MD - MW*ZD

P2= XG*BUO*ZD

P3= ZG*BUO*ZD

P4= CD*(MD*EO0 - ZD*E1)

WRITE(*,*) P1,P2,P3 P4

EPSI=.00000001

THETA0=0
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IF(XGB.GT.0) P4=1*P4
18 DO 19 I=1,2000
FT=FUNC(THETAO0)
DFT=DFUNC(THETAOQ)
DELT=FT/DFT |
THETAO=THETAO-DELT
IF(ABS(DELT)-EPSI) 20,20,19
19 CONTINUE
FT=FUNC(THETAO0)
20 WRITE(*,*) THETAO, FT
C
DV=(MASS-ZWDOT)*(IY-MQDOT){MASS*XG+ZQDOT)*(MASS*XG+MWDOT)
A11DV=(IY-MQDOT)*(ZW-2*CD*EO*U*TAN(THETAQ))
& +HMASS*XG+ZQDOT)*(MW+2*CD*E1*U*TAN(THETAO))

A12DV=(TY-MQDOT)*(MASS+ZQ+2*CD*E1*U*TAN(THETAO0))+
&  (MASS*XG+ZQDOT)

& *(MQ-MASS*XG-MASS*ZG*U*TAN(THETAO0)-2*CD*E2*U*TAN(THETAO())
A13DV=-(MASS*XG+ZQDOT)*WEIGHT

BIDV =(IY-MQDOT)*ZD-HMASS*XG+ZQDOT)*MD
A21DV=(MASS-ZWDOT)*(MW+2*CD*E1*U*TAN(THETAO))

& +MASS*XG+MWDOT)*(ZW-2*CD*EO*U*TAN(THETAO0))

A22DV~(MASS-ZWDOT)*(MQ-MASS*XG-MASS*ZG*U*TAN(THETA0)-2*CD*E2*U
& *TAN(THETA0)}+(MASS*XG+MWDOT)*
& (MASS+ZQ+2*CD*E1*U*TAN(THETAO))
A23DV=-(MASS-ZWDOT)*WEIGHT
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B2DV =(MASS-ZWDOT)*MD+MASS*XG+MWDOT)*ZD

All=Al1DV/DV
Al2=A12DV/DV
Al3=A13DV/DV
A21=A21DV/DV
A22=A22DV/DV
A23=A23DV/DV
Bl =BIDV /DV

B2 =B2DV /DV

EPS =1.D-5
ILMAX=1500

DO 1 I=1,ITC
WRITE (*,2001) LITC
TC=TCMIN+(I-1)*(TCMAX-TCMIN)/(ITC-1)
POLE=1.0/TC
ALPHA3=4.0*POLE
ALPHA2=6.0*POLE**2
ALPHA1=4.0*POLE**3
ALPHAO= POLE**4
K4=ALPHAO/((B1*A21-B2*A11)*U0**4+(B1*A23-B2*A13)*ZGB*U0**2)
A2M=B1*U0**2
A3M=B2*U0**2
AOM=-(A11+A22)*U0-ALPHA3
BIM=B2*U0**2
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B2M=(B2*A12-B1*A22)*U0**3
B3M=(B1*A21-B2*A11)*U0**3
BOM=(A11*A22-A21*A12)*U0**2-A23*ZGB-ALPHA2-B1*U0*U0*K4
CIM=(B2*A11-B1*A21)*U0**3

C2M=(B1*A23-B2*A13)*ZGB*U0**2
COM=(A13*A21-A23*A11)*ZGB*U0+ALPHA 1(B2+B1*A22-B2*A12)*K4*U0**3
K2=CIM*BOM*A3M-BIM*COM*A3M-CIM*B3M*AOM
K2=K2/(CIM*B2M*A3M-BIM*C2M*A3M-C IM*B3M*A2M)
K1=(COM-C2M*K2)/C1M

K3=(AOM-A2M*K2)/A3M

DO 2 J=1,IU
U=UMIN+(J-1)*(UMAX-UMIN)/((IU-1)

A(1,1)=0.0D0

A(1,2)=0.0D0

A(1,3)=1.0D0

A(1,4)=0.0D0
A(2,1)=-A13*(XGB*SIN(THETA0)-ZGB*COS(THETAO0))+B1*U*U*K1
A(2,2)=A11%U +BI1*U*U*K2

A(2,3)=A12*U +B1*U*U*K3

AQ24=  BI*U*U*K4
A(3,1)=-A23*(XGB*SIN(THETA0)-ZGB*COS(THETAO0))+B2*U*U*K1
A2 A21*U +B2*U*U*K2

A(3,3)= A22*U +B2*U*U*K3

A(3,4)= B2*U*U*K4

A(4,1)=-U

A(4,2)= 1.0D0




C

10

A(4,3)= 0.0DO
A(4,4)= 0.0DO

CALL RG(4,4,A,WR,WIL,0,ZZZ IV1,FVLIERR)

CALL DSTABL(DEOS,WR,WLFREQ)

IF (J.GT.1) GO TO 10
DEOSOO= DEOS
UoO = U
LL= 0
GO TO2

DEOSNN = DEOS
UNN = U
PR= DEOSNN*DEOSOO
IF (PR.GT.0.D0) GO TO 3
LL = LL+
IF (LL.GT.3) STOP 1000
IL=0
UO = UOO

UN= UNN
DEOSO = DEOSOO
DEOSN = DEOSNN

UL = UO
UR = UN
DEOSL = DEOSO
DEOSR = DEOSN

U = (UL+UR)/2.D0
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ALPHA = (DEOSL-DEOSR)/(UL-UR)
U =- (DEOSL-ALPHA*UL)YALPHA

A(1,1) = 0.0D0
A(1,2) = 0.0D0
A(1,3) = 1.0D0
A(1,4) = 0.0D0

A(2,1) = A13*(XGB*SIN(THETAO)-ZGB*COS(THETAO))+B1*U*U*K1
A(2,2) = A11*U +BI*U*U*K2

A@2,3 )= A12*U +BI*U*U*K3

A(24 )= BI*U*U*K4

A(3,1) = A23*(XGB*SIN(THETAO)-ZGB*COS(THETAO))+B2*U*U*K 1
A(.2) = A21*U +B2*U*U*K2

A(3.3)= A22*U +B2*U*U*K3

A(,4)= B2*U*U*K4

A@)=U

A(4,2) = 1.0D0

A(4,3) = 0.0D0

A(4,4 )= 0.0D0

CALL RG(4,4,A,WR,W1,0,ZZZ.1V1 FV1,IERR)
CALL DSTABL(DEOS,WR,WLFREQ)

DEOSM = DEOS

UM=U

PRL = DEOSL*DEOSM
PRR = DEOSR*DEOSM
IF (PRL.GT.0.D0) GO TO 5

. ) —— —




Uo = UL
UN = UM
DEOSO = DEOSL
DEOSN = DEOSM
IL = IL+l
IF (IL.GT.ILMAX) STOP 3i00
DIF = DABS(UL-UM)
IF (DIF.GT.EPS) GO TO 6
U=UM
GOTO 4
5 IF (PRR.GT.0.D0) STOP 3200
UO = UM
UN = UR
DEOSO = DEOSM
DEOSN = DEOSR
IL = IL+1
IF (IL.GT.ILMAX) STOP 3100
DIF = DABS(UM-UR)
IF (DIF.GT.EPS) GO TO 6
U=UM
4 LLL = 10+LL
WRITE (LLL.*) U/UO,TC*UO/L
3 UOO = UNN
DEOSOO = DEOSNN
2 CONTINUE
1 CONTINUE
C




2001 FORMAT (2I5)
END

SUBROUTINE DSTABL(DEOS,WR, WI,0OMEGA)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION WR(4),WI(4)
DEOS=-1.0D+20
DO1I=14
IF (WR(I).LT.DEOS) GO TO 1
DEOS = WR(I)
U=1
1 CONTINUE
OMEGA = WI(IJ)
OMEGA = DABS(OMEGA)
RETURN
END

SUBROUTINE TRAP(N,A,B,0UT)
C NUMERICAL INTEGRATION ROUTINE USING THE TRAPEZOIDAL RULE
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION A(1),B(1)
NI =N-1
OUT =00
DO 11=1,N1
OUT1 = 0.5*(A(D+A(I+1))*B(+1)-B(D)
OUT = OUT+OUTI1
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1 CONTINUE
RETURN
END

C FUNCTIONS USED IN NEWTON RAPHSON ROUTINE
FUNCTION FUNC(THETAO)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON P1,P2,P3 P4
FUNC = PI*DTAN(THETAO) + P2*DCOS(THETA0) + P3*DSIN(THETAO)
&  +P4*(DTAN(THETAOQ))**2
RETURN
END

FUNCTION DFUNC(THETAO)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON P1,P2,P3,P4
DFUNC= P1*(1.DO/DCOS(THETAO0))**2 - P2*DSIN(THETAO) +

& P3*DCOS(THETAO) + P4*2.DO*DTAN(THETAO)*(1.D0/DCOS(THETAO))**2.D0
RETURN
END
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